圓的方程
1、圓的定義:平面內(nèi)到一定點(diǎn)的距離等于定長的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長為圓的半徑。
2、圓的方程
(1)標(biāo)準(zhǔn)方程,圓心,半徑為r;
(2)一般方程
當(dāng)時,方程表示圓,此時圓心為,半徑為
當(dāng)時,表示一個點(diǎn);當(dāng)時,方程不表示任何圖形。
(3)求圓方程的方法:
一般都采用待定系數(shù)法:先設(shè)后求。確定一個圓需要三個獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);
另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點(diǎn),以此來確定圓心的位置。
3、直線與圓的位置關(guān)系:
直線與圓的位置關(guān)系有相離,相切,相交三種情況:
(1)設(shè)直線,圓,圓心到l的距離為,則有;;
(2)過圓外一點(diǎn)的切線:①k不存在,驗(yàn)證是否成立②k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程
(3)過圓上一點(diǎn)的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2
4、圓與圓的位置關(guān)系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。
設(shè)圓,
兩圓的位置關(guān)系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。
當(dāng)時兩圓外離,此時有公切線四條;
當(dāng)時兩圓外切,連心線過切點(diǎn),有外公切線兩條,內(nèi)公切線一條;
當(dāng)時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;
當(dāng)時,兩圓內(nèi)切,連心線經(jīng)過切點(diǎn),只有一條公切線;
當(dāng)時,兩圓內(nèi)含;當(dāng)時,為同心圓。
注意:已知圓上兩點(diǎn),圓心必在中垂線上;已知兩圓相切,兩圓心與切點(diǎn)共線
圓的輔助線一般為連圓心與切線或者連圓心與弦中點(diǎn)
數(shù)列定義:
如果一個數(shù)列從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個常數(shù),這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,公差常用字母d表示。
等差數(shù)列的通項(xiàng)公式為:an=a1+(n-1)d(1)
前n項(xiàng)和公式為:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)
以上n均屬于正整數(shù)。
解釋說明:
從(1)式可以看出,an是n的一次函數(shù)(d≠0)或常數(shù)函數(shù)(d=0),(n,an)排在一條直線上,由(2)式知,Sn是n的二次函數(shù)(d≠0)或一次函數(shù)(d=0,a1≠0),且常數(shù)項(xiàng)為0。
在等差數(shù)列中,等差中項(xiàng):一般設(shè)為Ar,Am+An=2Ar,所以Ar為Am,An的等差中項(xiàng),且為數(shù)列的平均數(shù)。
且任意兩項(xiàng)am,an的關(guān)系為:an=am+(n-m)d
它可以看作等差數(shù)列廣義的通項(xiàng)公式。
推論公式:
從等差數(shù)列的定義、通項(xiàng)公式,前n項(xiàng)和公式還可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
若m,n,p,q∈N_,且m+n=p+q,則有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差數(shù)列,等等。
基本公式:
和=(首項(xiàng)+末項(xiàng))×項(xiàng)數(shù)÷2
項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))÷公差+1
首項(xiàng)=2和÷項(xiàng)數(shù)-末項(xiàng)
末項(xiàng)=2和÷項(xiàng)數(shù)-首項(xiàng)
末項(xiàng)=首項(xiàng)+(項(xiàng)數(shù)-1)×公差
本學(xué)期我擔(dān)任高二(13)、(14)兩班的數(shù)學(xué)教學(xué),完成了選修1-2、4-4、4-5內(nèi)容的教學(xué)?,F(xiàn)將本學(xué)期的教學(xué)總結(jié)如下:
由于所帶的班級是文科班,學(xué)生基礎(chǔ)普遍較差,接受比較慢的實(shí)際情況,我采取了低起點(diǎn),小步子的教學(xué)方法,根據(jù)教材的內(nèi)容設(shè)計課的類型,并對教學(xué)過程的程序及時安排,認(rèn)真寫好每一篇教案。每一節(jié)課都做到有備而來,每堂課都在課前做好充分準(zhǔn)備,課后及時對課上出現(xiàn)的情況進(jìn)行總結(jié),并認(rèn)真搜集每節(jié)課的知識要點(diǎn),歸納在一起。在準(zhǔn)備課堂練習(xí)時,需查閱大量的資料,給學(xué)生高質(zhì)量的習(xí)題,使每個題都有針對性。具體采取的教學(xué)措施是:
1、教學(xué)中要傳授知識與培育能力相結(jié)合,充分調(diào)動學(xué)生學(xué)習(xí)的主動性,培育學(xué)生的概括能力,是學(xué)生掌握數(shù)學(xué)基本方法、基本技能。
2、以五大數(shù)學(xué)思想為主線,有目的、有計劃、有重點(diǎn),避免面面俱到,減輕學(xué)生的學(xué)習(xí)負(fù)擔(dān)。
3、加強(qiáng)教育教學(xué)研究,堅持學(xué)生主體性原則,堅持循序漸進(jìn)原則,堅持啟發(fā)性原則。研究并采用以“五段發(fā)現(xiàn)式教學(xué)”模式為主的教學(xué)方法,全面提高教學(xué)質(zhì)量。
4、積極參加集體備課,共同研究,努力提高授課質(zhì)量
5、堅持向同行聽課,取人所長,補(bǔ)己之短。相互研究,共同進(jìn)步。
6、堅持學(xué)法研討,加強(qiáng)個別輔導(dǎo)(差生與優(yōu)生),提高全體學(xué)生的整體數(shù)學(xué)水平,培育尖子學(xué)生。
社會對教師的素質(zhì)要求更高,在今后的教育教學(xué)工作中,我將更嚴(yán)格要求自己,多方面提高自己的素質(zhì),努力工作,爭取在多領(lǐng)域貢獻(xiàn)自己的力量,發(fā)揚(yáng)優(yōu)點(diǎn),改正缺點(diǎn),開拓前進(jìn),不斷地奉獻(xiàn)自己的力量。一份耕耘,一份收獲。教學(xué)工作苦樂相伴。我將本著“勤學(xué)、善思、實(shí)干”的準(zhǔn)則,一如既往,再接再厲,把工作搞得更好。